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The numerical simulation of turbulent oceanic flows is susceptible to the
appearance of instabilities associated with the misrepresentation of nonlinear
interactions among small-scale motions. Specialized filters and differencing
schemes have been successfully used in the past to suppress the growth of
these instabilities in finite-difference ocean models. Here, we introduce a new
filtering procedure designed to control the growth of nonlinear instabilities
in the spectral element solution of nonlinear oceanic flows. The new procedure
involves two separate steps. First, a spectral filter is applied to the vorticity
and divergence fields to damp oscillations in high-gradient regions and to
restore spectral accuracy away from them. Second, the associated velocity
field is computed from a set of Poisson equations, and its boundary conditions
and interelement continuity are restored. This two-step strategy avoids the
loss of C 0 continuity and the weakening of Dirichlet boundary conditions
that can result when the filter is directly applied to the velocity field.

The behavior of the filter is investigated numerically on the canonical
problem of the double-gyre wind-driven circulation in a rectangular basin
using a spectral element shallow water model. The parameters of the simula-
tion are chosen to produce mesoscale eddies. The filter is able to stabilize
the simulation even at coarse resolution and to recover the ‘‘correct’’ statistical
behavior with as few as two grid points per Rossby deformation radius.
Finally, a simulation of the wind-driven circulation in the North Atlantic
Ocean is performed to illustrate the effectiveness of the filter in realistic
settings. Q 1997 Academic Press
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1. INTRODUCTION

The oceanic circulation exhibits regions of rapid property changes—e.g., western
boundary currents, mesoscale eddies, and the thermocline. The representation of
these features in basin-scale ocean models is often problematic because of the high
computational cost involved in resolving their scales. (For example, a state-of-the-
art ocean model may have an average resolution of only 15 km, whereas the length
scale of mesoscale eddies can be as low as 10 km at high latitudes.) Since these
features tend to be only marginally resolved on the model grid, they are a prime
source of nonlinear instability through the generation of small-scale noise. This
noise can be amplified through nonlinear interactions, particularly in high Reynolds
number simulations.

Fronts and narrow features are not the only source of noise; independent of their
presence, the nonlinear dynamics of the ocean can give rise to dynamical instabilities.
These nonlinearities generate a continuous spectrum of scales that can accumulate
energy at the high end of the wavenumber spectrum, which may also lead to a
breakdown of the simulation. Various algorithms have been devised to avoid the
growth of these instabilities in spectral and finite difference models of the ocean
and atmosphere. In this article, we present a new filtering strategy designed to
remove the unavoidable accumulation of small-scale noise from the spectral element
shallow water model of [15]. We show the effectiveness of the new strategy by
applying it to several model problems.

Spectral element methods are relative newcomers to geophysical fluid flow model-
ing. The current two-dimensional versions have been proposed in [17, 15] and solve
the shallow water equations. Their effectiveness in the context of geophysical flows
has been demonstrated in several oceanic and atmospheric applications [16, 11, 22].
Spectral element methods (SEM) achieve flexibility and efficiency in the simulation
of geometrically and dynamically complex flows by dividing the computational
domain into spectral elements wherein the solution is interpolated with high-order
polynomials. Spectral element methods have exponential convergence rates for
smooth solutions. However, if the solution develops shocks, or if small-scale features
become only marginally resolved, as often happens in turbulent circumstances, the
order of convergence drops and a loss of accuracy occurs. It is important to note
that the loss of accuracy affects mostly the amplitude of the unresolved small scales;
their phase speed is nevertheless well represented by the spectral element solution
[9]. The loss of accuracy is accompanied by the appearance of Gibbs oscillations
in the marginally resolved regions, i.e., unphysical and rapid oscillations that result
from the truncation of a slowly convergent spectral series. These oscillations may
be amplified through nonlinear interactions, which may in turn lead to a breakdown
of the simulation.

The preferred solution to these potentially disastrous instabilities is to keep
refining the grid in the high-gradient regions until the small-scale features become
resolved. This prescription fits the spectral element philosophy nicely, but is limited
in practice by the available computer resources. Other approaches to resolve the
fronts or steep gradients include shock capturing schemes [9, 21], adaptive grids
based on conforming and/or nonconforming spectral elements [3, 10], and hybrid
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spectral elements and low-order schemes [2, 8]. These approaches tend to be expen-
sive computationally, increase the complexity of the formulation, and are cumber-
some to generalize to all situations.

A second approach consists of controlling the generation and growth of the small-
scale features until they become resolvable on the model grid. Schemes built around
this principle fall into two general categories. In the first category, the exponential
growth in energy associated with the instabilities is eliminated by reformulating
the discretized equations so as to ensure the discrete conservation of energy and
enstrophy; a representative scheme of this class is the well-known Arakawa Jacobian
[1]. In the second category, a highly scale-selective dissipation mechanism is intro-
duced to remove the small-scale noise while leaving larger-scale features unaffected.
Dissipation based on hyperviscosity [6], with a fourth-order operator or higher, has
been successfully used to such ends in spectral and finite difference models. The
application of hyperviscosity to conforming finite element methods is, however,
problematic because the high-order operators require elements with higher order
continuity than C 0, which makes the approach unappealing for the spectral ele-
ment method.

Filters are an alternative means to achieve the goal of scale-selective dissipation,
with the distinct advantage that they do not involve higher order operators. Filters
based on the Sd de-aliasing rule and Shapiro filters have been adopted in spectral
and finite difference models to stem the growth of nonlinear instabilities. A new
class of filters, called spectral filters, has been developed recently to cope with
instabilities generated by sharp fronts and narrow features. Several spectral filters
have been successfully used in conjunction with spectral methods (see [23, 7] and
references therein), but their application in spectral element models has been limited
for various reasons. First, most spectral element methods use relatively low spectral
truncation; thus, a spectral filter may be underrepresented on the grid, and its
application runs the risk of creating additional oscillations. Second, the straightfor-
ward application of a spectral filter on each element independently destroys bound-
ary conditions and interelement continuity; these constraints are difficult to reimpose
on the filtered fields without reintroducing noise. Note that a high-order filter that
would preserve the C 0 constraint and the boundary conditions would be difficult
to construct given the unstructured nature of a finite element grid.

Here we present a general filtering strategy that allows the use of spectral filters
without destroying boundary conditions and interelement continuity in a spectral
element shallow water model. The technique is based on the spectral filtering of
vorticity and divergence rather than on the filtering of velocity directly. The two
drawbacks of filtering are then avoided since, in a primitive variable formulation,
vorticity and divergence boundary conditions are not usually enforced directly and
the cross-element continuity of both fields is imposed only weakly. In our scheme,
the filtered velocity is recovered by solving two Poisson problems which have the
same boundary conditions as the original system of equations. The Poisson equations
are solved with conjugate gradient iterations; since the filter influences only the
high wavenumbers, the convergence is fast if the original velocity is used as an
initial guess. The technique allows the preservation of spectral accuracy in the



133FILTERING FOR A SPECTRAL ELEMENT MODEL

smooth regions and is suitable for general domains and on nonuniform grids. In
addition, it permits the design of adaptive filtering strategies.

The plan of this paper is as follows. A brief description of the shallow water
spectral element model is given in Section 2. Section 3 describes the filtering proce-
dure. In Section 4, the new procedure is tested on an eddy-resolving mid-latitude
double gyre problem. It is shown that the spectral filtering technique reproduces
the statistical behavior of mesoscale features and allows the recovery of the phenom-
enology on grids whose resolution is as low as 2 points per Rossby radius. Section
5 shows the results of the application of the filter on a global nonuniform grid used
for an eddy-resolving simulation in the North Atlantic Ocean.

2. SPECTRAL ELEMENT SHALLOW WATER MODEL

The shallow water equations in the two-dimensional region V with boundary G

have the form

u
t

1 u ? =u 2
= ? [n(h 1 z)=u]

(h 1 z)
5 Q (1)

z

t
1 = ? [(h 1 z)u] 5 0, (2)

where

Q 5 2f 3 u 2 g=z 2 cu 1
t

r(h 1 z)

is the forcing in the momentum equation; u 5 (u, v) is the horizontal velocity
vector; h is the resting depth of the fluid; z is the free surface elevation; f is the
Coriolis force; g is the gravitational acceleration; c is the bottom drag coefficient;
n is the lateral viscosity coefficient; r is the density of the fluid; t is the wind stress
acting on the surface of the fluid; and, = is the two-dimensional gradient operator.

The boundary conditions are Dirichlet conditions on u and/or z,

u 5 ub on GD, z 5 z b on G
z
D, (3)

and Neumann conditions on u,

n=u ? n 5 q on GN . (4)

Here, n is the unit normal to the boundary; q is the applied stress. We refer the
reader to [4] for a discussion of the appropriate boundary conditions to apply for
different forms of the shallow water equations.

The starting point of the spectral element model is the Galerkin formulation of
the shallow water equations,
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A
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(h 1 z) J f dA
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n=u ? =f dA 1 E
GN

qf dS, (5)

E
A

z

t
f p dA 5 2E

A
= ? [(h 1 z)u]f p dA, (6)

where f and f p are the basis functions associated with the velocity and the surface
elevation, respectively. They are square integrable functions whose first derivatives
are also square integrable. The functions f and f p vanish on GD and G

z
D , respectively.

The spatial discretization proceeds by subdividing the domain V into a set of
conforming quadrilateral isoparametric elements [18, 20]. In each element, the
variables u and z are expanded as

u 5 ONu

i,j50
uij fij , z 5 ONp

i,j50
zij f

p
ij , (7)

where N u and N p are the number of nodes per element on the velocity and pressure
Gauss–Lobatto grids, respectively; fij and f

p
ij are Legendre Cardinal functions

defined on these grids. Expansions (7) are local within each element. The sole global
requirement is that the interpolation be continuous across element boundaries, the
so-called C 0 continuity requirement. The continuity of the normal derivative is
enforced weakly only by the variational formulation. More detail on the spectral
element discretization and the choice of basis functions fij and f

p
ij is given in [15].

3. FORMULATION OF THE TWO STEP FILTERING PROCEDURE

3.1. The Vorticity and Divergence Equations

Gibbs oscillations appear whenever a solution develops shocks or unresolvable
gradients. In spectral and spectral element methods, these oscillations are symptom-
atic of a slowly convergent series that has lost its exponential convergence property.
Spectral filters are designed to remedy this loss and to recover spectral accuracy
away from the shock. Unfortunately, a straightforward application of a spectral
filter in each element can and does destroy the C0 continuity of the solution and
affects the enforcement of the boundary conditions, particularly Dirichlet bound-
ary conditions.

Our solution relies on filtering derived variables whose continuity across element
boundaries is not essential. For the shallow water equations two such candidates
are the vorticity, v 5 = 3 u, and divergence, d 5 = ? u. No boundary conditions are
directly imposed on either variable, and their continuity across element boundaries is
imposed only weakly. They have the further virtue that they are dynamically relevant
variables that develop sharp fronts as the velocity gradients steepen (being differen-
tiated quantities, they accumulate more noise than the velocity field). Furthermore,
the velocity field associated with a given distribution of vorticity and divergence
can be easily recovered via the solution of a set of Poisson equations.
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Let F denote the filter operator, let ṽ 5 F (v) and d̃ 5 F (d) be the filtered
vorticity and divergence fields, and let ũ denote the associated velocity field. Then,
the vector identity,

=2ũ 5 =d̃ 2 = 3 ṽ, (8)

yields the requisite equations for ũ; the boundary conditions are the same as those
of the original equations.

Note that in the context of the shallow water equations, the divergence does not
vanish, and only the vertical component of the vorticity vector, g̃, is not zero.
Hence, the Galerkin formulation of Eq. (8) in the two-dimensional case is

E
A

=ũ ? =f dA 5 E
A

a ? =f dA 1 E
GN

(=ũ 2 a) ? nf dS,

(9)

E
A

=ṽ ? =f dA 5 E
A

b ? =f dA 1 E
GN

(=ṽ 2 b) ? nf dS,

where a 5 (d̃, 2g̃), b 5 (g̃, d̃), and n is the outward unit vector. If the whole
boundary of the domain consists of closed rigid walls where no-slip boundary
conditions are enforced, then GN 5 B. If free-slip boundary conditions are used,
then (=ũ 2 a) ? n 5 0, (=ṽ 2 b) ? n 5 0. Hence, in these special but common cases
the boundary integrals in (9) vanish.

The solution of the two Poisson equations achieves two goals: the continuity of
the velocity across element boundaries and the boundary conditions on the velocity
are re-enforced; and the continuity of the normal derivatives at the element bound-
aries is reimposed weakly. Notice that the recovery step (9) is independent of the
filter F . Furthermore, the recovery procedure is based on the Laplace operator
which tends to smooth steep gradients. Finally, the two Poisson equations can be
solved independently.

The solution of Eqs. (9) is easily accomplished with conjugate gradient iterations
using the unfiltered velocity, u, as an initial guess. Since the filter is designed to
damp the high wavenumbers, the error between the initial guess and the solution
of (9) has high wavenumber components only, and the latter can be removed rapidly
with a few iterations. In addition, the number of conjugate gradient iterations
needed for convergence can be used as a diagnostic tool since it increases with the
amount of noise in the system. Thus, it is possible to construct an adaptive filter,
using the number of iterations as a criterion to adjust the strength of the filter and
the frequency of its application.

The recovery procedure in spherical coordinates is given in Appendix A.

3.2. The Spectral Filter

The vorticity and divergence fields are filtered in each element independently by
a spectral filter. A spectral filter operator, F (g), transforms the truncated spec-
tral series
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g(x) 5 ON
k50

gk Lk(x) (10)

into the new series

F (g) 5 g̃(x) 5 ON
k50

gk s(k/N)Lk (x), (11)

where Lk are the spectral functions, gk are the spectral coefficient, and k is the
mode number. The function s(k/N) is the spectral filter.

The following is a brief discussion of spectral filters: the reader is referred to
Vandeven [23] and Boyd [7] for further details. Vandeven [23] has shown that if

s(0) 5 1, s (m)(0) 5 0, s (m)(1) 5 0, m 5 1, ..., p,

then ug̃(x) 2 g(x)u depends on N and the regularity of g. If g has p continuous
derivatives, then

ug̃(x) 2 g(x)u # C
1

N p21/2 . (12)

If g has discontinuities, then

ug̃(x) 2 g(x)u # C
1

N p21d(x)p21 , (13)

where d(x) is the distance to the closest discontinuity and C is a constant. The
parameter p is called the order of the filter. If the function is infinitely differentiable,
it follows from estimate (12) that the error decreases exponentially with increasing
order. If the function has a jump-discontinuity, the error depends on the distance
to that discontinuity and falls off algebraically as d(x) p21. Thus a high-order filter
is advantageous away from the discontinuity, whereas a low-order filter is more
appropriate near it.

We have elected to adopt the lagged erfc-log spectral filter proposed by Boyd
[7] (hereafter referred to as the Boyd–Vandeven filter). For large p, the filter
asymptotes to the Vandeven and Euler filters [23], both of which are widely used
for damping Gibbs oscillations and for sum-accelerations. However, compared to
the latter two, the Boyd–Vandeven filter is easier to calculate and to manipulate
since it has an analytic formulation which is continuous in both order, p, and
argument, u. This is a useful property for designing an optimum filter whose order
increases with distance from singularities and unresolved boundary layers, particu-
larly on nonuniform grids.

The Boyd–Vandeven filter has the form

se(i/N, s) 5 5
1 if i , s,

As erfc (2Ïpx(u)(uuu 2 As)), u 5
i 2 s

N 2 s
if s # i # N.

(14)
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FIG. 1. Erfc-log filter se(u) for different values of p (s 5 0).

where

x(u) 5 5
1 if u 5 As,

!2
log(1 2 4V2)

4V2 , V(u) 5 uuu 2 As elsewhere,
(15)

and s is the lagging parameter, which controls the shifting of the filter towards the
high-end of the spectrum.

The Boyd–Vandeven filter obeys the Vandeven conditions and is, hence, able
to recover spectral accuracy in the limit of an infinitely smooth solution. Figure 1
shows the unlagged (s 5 0) Boyd–Vandeven filter for different values of p. The
order p influences the shape of the filter. When p is large, the filter produces less
dissipation of the small wavenumbers and more dissipation of the high wavenum-
bers. Figure 2 shows the effect of a lagged Boyd–Vandeven filter on the N u harmon-

FIG. 2. Comparison of lagged Boyd–Vandeven filter with harmonic viscosity. The effect of ordinary
and hyperviscosity are schematically represented in spectral space. Line 1, se ; line 2, ordinary viscosity
with small n ; line 3, ordinary viscosity with larger n ; line 4, hyperviscosity (fourth order).
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ics in a spectral expansion. The filter influences only the last several harmonics in
the spectrum. In spectral space, the effect of the viscosity operator n=2u is analogous
to a filter of the form 1 2 n(2)k2, where n(2) is a nondimensional viscosity parameter.
The spectral filter, on the other hand, can be likened to a hyperviscosity operator,
n=nu, whose representation in spectral space is analogous to the filter 1 2 n(n)kn.
As n increases, the impact of the filter on the small wavenumbers decreases, while
its effect on the large wavenumbers increases. Figure 2 shows that the viscous
operator is less scale-selective than the spectral filter se .

The application of the filter on a function g(x) requires the following operations:
calculation of the Legendre coefficients gk, application of the filter in spectral space,
and the calculation of the filtered function values g̃. These three operations—
Legendre transform, the application of the filter, and the inverse Legendre trans-
form—can be incorporated in a single matrix. The filter becomes then a matrix–
vector product, performed independently in each element, whose filtering matrix
represents a convolution operator. This convolution operator depends on the shape
of s and on the number of Cardinal function N u in the expansion, but is independent
of the geometry of an element; thus, if uniform filtering is used the operator is the
same for all elements. The operator is derived in Appendix B.

4. TEST CASE: WIND-DRIVEN CIRCULATION IN A BASIN

4.1. Performance of the Filter on Grids with Different Resolution

To test the performance of the filtering procedure, the spectral element shallow
water model of Iskandarani et al. (SEOM) [15] is applied in reduced gravity mode
to the canonical problem of a wind-driven, double-gyre, mid-latitude ocean in a
rectangular basin [12, 14, 19]. The problem is solved in a basin of 3600 3 2800 km
and has free-slip boundary conditions. The depth of the active layer is h 5 600 m
and the reduced gravity g9 5 0.02 m/s2. The Coriolis parameter in the mid-latitude
b-plane approximation has the form

f 5 f0 1 b(y 2 y0), (16)

where f0 5 7.27 3 1025 1/s, b 5 1.97 3 10211 1/(ms), and y0 5 1400 km.
The flow starts from rest. The circulation is forced by a steady zonal wind, which

is similar to that of McCalpin and Haidvogel in [19] and has the form

tx 5 t0 H(1 1 4a(y/L 2 1/2)) cos(2fy/L) 2
4a
2f

sin(2fy/L)J, (17)

where t0 5 25 3 1025 (m/s)2, a 5 0.13, L 5 2800 km. The wind stress component
in the meridional direction ty is set to zero. The wind forcing is chosen in order to
produce a free jet analogous to the Gulf Stream [19]. The wind stress (17) has zero
curl at the northern and southern boundaries. A bottom drag c 5 1 3 1027 1/s is
used to balance the wind stress forcing. The viscosity n 5 120 m2/s is kept small
enough to avoid dissipating the jet and the eddies. With this set of parameters, the
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Rossby radius is R 5 Ïg9h/f0 5 48 km at the central latitude, and the Munk layer
thickness is d 5 (n/b)1/3 5 18 km.

We study the performance of the filter on grids of different resolutions. The grid
of simulation A has an average resolution of 9 km, which is fine enough to resolve
the scales of interest without filtering; simulation A is therefore used as the ‘‘true’’
solution. The average grid-spacing of simulations B and C are 13 and 26 km,
respectively. These grids resolve the scales of interest only marginally, and filtering
is needed to damp small-scale noise. Simulation D uses the same grid as simulation
C but, instead of the filter, relies on a higher viscosity to stabilize the simulation.
Finally, simulation E is performed on a grid with 35 km average resolution to
investigate the limit of applicability of the filter on coarse grids. All grids are uniform
in the meridional direction and slightly nonuniform zonally; their resolution is
enhanced near the western boundary. Spectral expansions of 7 3 7 and 5 3 5 are
used in all elements for the velocity and pressure grids, respectively. The time step
is 1800 s for simulation E, 900 s for simulations C and D, 450 s for simulation B,
and 360 s for simulation A.

Figure 2 illustrates the difference between the dissipation strategies used in
simulations A–E. In simulation A dissipation is represented by line 2, which corres-
ponds to a ‘‘low’’ laplacian viscosity. Simulations B, C, and E use a combination
of low viscosity (line 2) and a lagged Boyd–Vandeven filter (line 1). In simulation
D the dissipation is obtained by a higher laplacian viscosity (line 3).

Figure 3A shows a contour plot of the interface height obtained from simulation
A. The simulation produces a double gyre and a turbulent mid-latitude jet. The
separation point of the jet oscillates widely, and the strong meandering of the jet
leads to the formation of rings. Simulations B, C, and E are computationally unstable
when used without filtering. In general, the instabilities are generated either at the
jet separation point or at the point where rings are pinching off. In all the experi-
ments, we have been able to stabilize the flow by applying the vorticity-divergence
filter described in Section 3. We use a filter of low order (p 5 2) whose strength
is changed by varying the lagging parameter (s in (14)) and the frequency with
which the filter is applied.

Figures 3B, C shows contour plots of surface elevation obtained from simulations
B and C, respectively. In simulation B, the filter is first applied at month 30, a
month prior to nonlinear failure. The value of the lagging parameter is s 5 5. The
filter is applied infrequently at an average rate of once every 24 time steps. Since
the filtering is moderate, the iterative solver for the Poisson problems (9) converges
quickly. (The unpreconditioned conjugate gradient algorithm converges in 10–15
iterations with a convergence criterion: uAru/uAu 5 1024.)

In simulation C, the filter is first applied at month 22, also a month prior to
failure. The filter is lagged with s 5 4 and is applied every six time steps. Although
in this case the elliptic problem has a smaller dimension than in simulation B,
the conjugate gradient method requires more iterations to converge (about 15–20
iterations in an unpreconditioned case with the same convergence criterion). This
is a consequence of the stronger filtering.

Figure 3 shows realizations of the circulation at end of year 10. Given the chaotic
nature of the flow, it is difficult to draw conclusions from instantaneous snap shots;



140 LEVIN, ISKANDARANI, AND HAIDVOGEL

FIG. 3. Contours of instantaneous interface height. Positive contours are represented by solid lines,
negative ones by dashed lines.

Fig. 3 is included as a simple illustration of the character of the flow. Examination
of the time series reveals that simulations A and B are similar in the following
features: the tightness of the jet, the strength of its meanders, its eddy-shedding
frequency, and its eastward penetration. Simulation C exhibits the same tendencies
except that its jet penetration eastward is somewhat reduced compared to cases A
and B. Simulation D, on the other hand, displays weaker meanders, ring formation
proceeds at a slower pace, and the jet’s penetration is reduced substantially.

Although the filter is able to stabilize the simulation on grids coarser than the
ones used in simulations A, B, or C, there is a resolution limit beyond which it
becomes impossible to recover the mesoscale phenomenology. Figure 5a shows a
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FIG. 4. Interface height along x 5 16 km in simulation C. Line 1 shows the field at 22 months,
before the filter is applied. Line 2 shows the field at 23 months, one month after filtering is started.
Stars show the values at gridpoints.

snapshot from a simulation performed on the coarse grid of experiment E. The
filter is the strongest here (s 5 3) and is applied every three time steps. It does a
good job of preventing the growth of the nonlinear instabilities even when the
viscosity is low (n 5 120 m2/s); however, the phenomenology is distorted by the
coarse resolution.

Figure 4 shows the impact of the filter in simulation C. Line 1 depicts the interface
height z at month 22 along a line of constant x at the western boundary. No filtering
has yet been applied to the field. The front is very steep and has only five grid
points across it. Gibbs oscillations are present in the vicinity of the front. Line 2
shows the effect of the filtering. The vorticity-divergence filter succeeds in damping
the Gibbs oscillations of the interface height but does not smear the front.

FIG. 5. Results of simulation E (coarse resolution with heavy filtering).
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The filtering procedure imposes a computational overhead which is mostly spent
on the iterative solution of the Poisson equations. This overhead depends on the
parameters of the simulation and those of the filter. The application of the filter
increases the computational cost of simulation B by 20%. In simulation C, due to
the increased frequency and strength of the filter, the cost of filtering becomes 50%
of the total cost. The filter is, nevertheless, still cost-effective since it allows the
recovery of the phenomenology on a coarser grid with a larger time step than would
be necessary otherwise. For example, simulation A requires nine times more CPU
time than simulation C and twice as much as simulation B.

4.2. Statistical Analysis

The preceding conclusions were drawn from a visual inspection of an animation
of circulation A–E. In this sections we compare the different cases quantitatively
based on the energy and enstrophy statistics, namely: the kinetic energy of the
mean flow, the mean eddy kinetic energy, the mean kinetic energy, and the mean
enstrophy, which are defined, respectively, as

K 5 kh hu2 1 v2j/2l, (18)

K9 5 kh h(u9)2 1 (v9)2j/2l, (19)

Kmean 5 kh hu2 1 v2j/2l, (20)

E 5 kh(g9)2l, (21)

where (u, v) is the horizontal velocity, g is the vertical component of vorticity, h
is the depth of fluid column, overbar denotes a time mean (j 5 (1/T) e j dt for
any field j), prime denotes a deviation from the mean (j9 5 j 2 j ), angle brackets
denote the space integral: kjl 5 eA j dA and T is the time interval.

In all simulations, we spin up the flow from rest for the first 5 years and then
take an average over the next 5 years (sampled every 3 days).

Figure 6 shows contour plots of time mean interface height for simulations A,
B, C, and D. It can be seen that simulations A, B, and C produce similar fields,
although the penetration of the jet is visually less on the coarser grids. Compared
to the high viscosity simulation (case D); however, the penetration of the jet is
considerably bigger in the filtered cases.

The superiority of filtering over high values of harmonic viscosity is demonstrated
clearly in Fig. 7, which shows contour plots of the space distribution of the mean
eddy kinetic energy. Most of the kinetic energy is concentrated in the western
boundary layer and most of the eddy kinetic energy is near the separation point.
Simulations B and C produce eddy kinetic energy distributions similar to those of
reference simulation A, while the high viscosity simulation results in a noticeably
different distribution: almost all of the turbulent features are dissipated.

Table I shows temporal statistics of the energy and enstrophy for the different
numerical experiments. Simulations A and B are very close in all characteristics.
In simulation B, the results are slightly less turbulent as indicated by the smaller
eddy kinetic energy K9 and by the larger energy of the mean flow K. Although
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FIG. 6. Contours of mean interface height, averaged over years 5 to 10 (sampled every 3 days).

simulation C uses a stronger filter than simulation B, it displays enstrophy character-
istics similar to those of simulations A and B, which shows that the filter does not
distort the mesoscale features.

The situation is noticeably different in simulation D, where a large viscosity is
used instead of the filter: both eddy kinetic energy and enstrophy are reduced by
half. Likewise, the coarse grid of simulation E alters the statistics considerably,
and the heavy filter needed to stabilize the computations leads to smaller energy
and enstrophy.

There is a small increase in enstrophy between cases A and B. We attribute this
to the creation of some noise when the filter is applied on grids with low spectral
truncation. On such grids, the filtering function is not represented smoothly. The
strong filter of simulation C decreases enstrophy but the kinetic energy is slightly
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FIG. 7. Contours of eddy kinetic energy.

TABLE I
Kinetic Energy and Enstrophy Statistics Obtained by Time Averaging during

Years 5 to 10 (Sampled Every 3 Days)

Grid Visc Filter K(1013) K9(1013) Kmean(1013) E(104)

A 9 km 120 No 1.43 1.87 3.30 2.30
B 13 km 120 Yes 1.44 1.86 3.28 2.31
C 26 km 120 Yes 1.59 1.92 3.48 2.26
D 26 km 500 No 1.57 0.66 2.25 1.08
E 35 km 120 Yes 1.43 1.53 2.29 1.70

Note. K is kinetic energy of mean flow; K9 is the eddy kinetic energy; Kmean is mean kinetic energy;
E is mean enstrophy.
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FIG. 8. Kinetic energy (shown in 1013 J/kg) during months 60 to 120.

larger than in simulation A. As with enstrophy and kinetic energy, filtering influences
the mean height fields in a complicated way. A light filter increases the gradients
of the height fields slightly, while a strong filter reduces it (see Figs. 5 and 6).

Figures 8 and 9 show the time series of kinetic energy and its discrete power
spectra sampled every 3 days during years 5 to 10. The time series obtained by
simulations A, B, and C (Figures 8A, B, C and 9A, B, C) have the same leading
frequency of 0.0028 1/day which corresponds to the time period of 11.9 months.
The leading low-frequency behavior is preserved in the filtered simulations.

On the other hand, as shown in Figs. 8D and 9D, the statistical behavior of the
kinetic energy is quite different for the high viscosity simulation, case D. Roughly
25% of the kinetic energy has been dissipated. The leading fluctuation frequency
is lower than in the reference time series: the strongest variability occurs on a time
scale of 19.6 months, almost twice as slow as in simulation A.

Figures 8E and 9E show the results obtained on the coarsest grid, where heavy
filtering is applied to stabilize the simulation. Although the energy mean is close
to the mean of the reference simulation, the power spectrum is significantly affected
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FIG. 9. Power spectrum (in log coordinates) of the kinetic energy. Abscissa shows log (frequency
(1/days)).

by the filtering. In this simulation the variability occurs mostly on the time scale
of 9.8 and 19.6 months.

5. AN EDDY-RESOLVING SIMULATION OF THE NORTH ATLANTIC OCEAN

In this section, we describe a simulation of the wind-driven circulation in the
North Atlantic Ocean performed with SEOM [15] on a global grid. The global
ocean is included in the simulation to avoid open boundary conditions. The grid
resolution is enhanced in the North Atlantic Ocean (above 58N) to resolve mesoscale
eddies; elsewhere, the grid is too coarse to represent the eddies.

An effective filter for a regional simulation of this kind is more difficult to
construct because the grid is nonuniform. Here the grid spacing varies from 10 km
to 370 km, with an average of 21 km in the North Atlantic and 120 km in the
Pacific. Figure 10 shows the global grid and, separately, the region of the North
Atlantic where 75% of the grid points are located.

Viscosity is chosen to allow the production of eddies in the North Atlantic and
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FIG. 10. Distribution of spectral elements. The mesh is refined in the North Atlantic Ocean. The
grey scale code represents the average grid spacing in each element in kilometers.

to keep the flow smooth in the rest of the ocean. To achieve this, the viscosity is
kept small in the North Atlantic and bigger in the rest of the ocean. Its value ranges
from 55 m2/s in the North Atlantic to 4400 m2/s in the Pacific with an average of
100 m2/s in the North Atlantic and 2000 m2/s in the rest of the ocean. In each of
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FIG. 11. Distribution of viscosity.

the regions, the viscosity is taken proportional to the maximum length of an element;
such scaling produces nearly uniform grid Reynolds number with respect to the
scale of the gravity wave speed. The viscosity changes gradually within an element
to avoid producing oscillations on element interfaces. A contour plot of viscosity
is shown in Fig. 11.

The simulation is done in reduced gravity form (g9 5 0.02 m2/s) with the resting
layer thickness of 600 m. The only external forcing is provided by the annual mean
wind stress of Hellerman and Rosenstein [13]. Integration starts from a state of
rest, and no-slip boundary conditions are used. The time step is 450 s. Without
filtering, the simulation fails around month 36 just as a ring is pinching off from
the Gulf Stream, because the spectral element grid does not resolve all the scales
of the steep gradients in the Gulf Stream region.

As shown in Section 3, an effective filter should have an order that depends on the
smoothness of the fields. When the low-order vorticity-divergence filter is applied
uniformly on the global grid, it may create nonphysical oscillations in regions which
are already smoothly resolved on the coarse grid, whereas the same filter may be
required in regions of fine resolution and narrow current features.

We use the nonuniform erfc-log filter described in Section 3. The filter order p
varies from 2 in the North Atlantic to 16 in the Pacific and is scaled according to
the maximum length in an element. The filter is lagged by s 5 4 and is applied
every 24 time steps. In our experiments it has been sufficient to vary the order of
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FIG. 12. Contours of surface displacement on the global grid.

the filter on an elemental basis, but a smooth change of order is also possible. The
conjugate gradient method used in the recovery procedure converges reasonably
fast; it requires 50–60 iterations to solve the Poisson problem with 106 unknowns.
(The convergence criterion is the same as for the rectangular case.)

Figure 12 shows contour plots of the interface displacement at months 60, and
Fig. 13 shows the North Atlantic region at months 60 and 61. Large-scale gyres
and boundary currents in the Pacific and South Atlantic are roughly correct, but
are weak and diffused due to the large viscosity. The filter is effective at stabilizing
the simulation and at preserving the mesoscale features in the North Atlantic. The
Gulf Stream, which separates correctly at Cape Hatteras, has strong meanders and
ring separation. One eddy separation event is shown in Fig. 13.

A coarse, 45-km average simulation of the North Atlantic is unable to obtain
Gulf Stream meandering and eddy separation. A grid of 21-km average has about
2 points per Rossby radius of deformation which is enough in the filtered model
to reproduce the phenomenology. With the help of the filter, we have been able
to obtain the dynamics on scales which would be dissipated had a high viscosity
been used to stabilize the simulation.

6. CONCLUSION AND DISCUSSION

In this article, we have presented a filtering strategy to damp small-scale noise
from spectral element computations. The strategy relies on filtering derived fields
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FIG. 13. Contours of surface displacement in the North Atlantic Ocean.
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such as the vorticity and divergence to remove the small scales, and on the solution
of Poisson equations to reimpose boundary conditions and interelement continuity
of the corresponding velocity field. We remark that the height field is not filtered
in our scheme, and thus, conservation of mass is preserved. The spectral Boyd–
Vandeven filter provides the scale-selective mechanism needed to damp the small
scales effectively while leaving the larger scales unaffected. Its scale-selection prop-
erties are superior to those of harmonic viscosity; furthermore, it does not put an
additional stability restriction on the time-step and can be easily implemented in
general domains.

The performance of the filter has been investigated numerically on several oceanic
problems. We have performed a series of experiments on grids of different resolution
to test the convergence of the filtered simulations to a reference, unfiltered, and high-
resolution simulation. The filtering is very efficient at damping Gibbs oscillations and
at stemming their nonlinear growth, so that the filter need not be applied too
frequently. These experiments indicate that the present filtering strategy allows a
spectral element shallow water model to represent accurately the rapidly varying
boundary currents and mesoscale eddies on grids with resolution as low as two
points per Rossby radius. We have also illustrated the application of the filter
strategy in realistic oceanic settings and have shown the results of an eddy-resolving
simulation in the North Atlantic Ocean, where the mesoscales are resolved only
marginally. The filtering is formulated in spherical geometry and applied nonuni-
formly on a global, highly unstructured grid.

The two-step filtering strategy proposed herein is mostly, if not entirely, meant
for spectral element or multidomain spectral methods, which require some sort of
global operation to be performed on the dependent variables to reimpose global
constraints after filtering is applied independently in each element or subdomain.
The Poisson equation (8) is one instance of such a global operation; other ‘‘globaliza-
tion’’ procedures can be devised. For example, Taylor’s global operation [22] consists
of averaging the solution at inter-element boundaries to reimpose the C 0 continuity
constraint. Although the method works well in his spherically periodic test cases,
it does not perform as well in our tests where it shows a propensity to reintroduce
Gibbs oscillations near element boundaries, particularly those coincident with do-
main boundaries.

For purely spectral methods, the two-step procedure can be avoided altogether.
Since there is no interelement continuity to worry about, the only concern is the
preservation of boundary conditions. Boyd (private communication) has recently
proposed a clever ‘‘basis recombination’’ for this purpose. Briefly, the solution is
reexpanded in a new basis where the low-wavenumber coefficients enforce the
boundary conditions (Dirichlet or Neumann), and the high-wavenumber polynomi-
als vanish at the edges. Filtering the high-wavenumbers then leaves the boundary
conditions unaffected.

The main liability in the vorticity-divergence filter is the cost incurred in solving
the Poisson equations during the recovery step. Our tests have shown that this cost
is low to moderate provided the filter is not removing a lot of energy from the
small scales. Increased consumption of CPU by the filter is indicative of excessive
small scales and points to the need for enhanced grid resolution. Nonetheless, in
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all cases discussed here, the saving in CPU possible on the coarser grids more than
compensates for the overhead of the elliptic solver.

The present article is just one step in formulating a full filtering strategy. The
algorithm outlined here lacks procedures to automatically select the optimal param-
eters for the filter, i.e., its order, its lag, and its frequency of application. The values
we have used in our simulations were determined experimentally. Furthermore, we
have adopted the number of CG iterations as an indirect and cheap (but remarkably
adequate) measure for the level of noise in our solution, and we have based our
adaptive filtering strategy on it. Ideally, one would like to interrogate the solution
periodically to determine when and where to apply the filter. The decision would
be based on estimates of the smoothness of the solution, and/or the amount of energy
contained in the smallest scales resolved by the grid. Optimal filter parameters would
then be calculated based on the distance from and strength of the small-scale
instabilities. The error/smoothness analysis and the parameter selection are compli-
cated issues that merit a separate study. Finally, we would like to point out that
vorticity-divergence formulation has a natural extension to the three-dimensional
case.

APPENDIX A: SPHERICAL GEOMETRY

If the equations are solved in a spherical geometry, the recovery equations have
to be modified. The analogues of vorticity and divergence are now defined as

d 5
ul

a cos u
1

vu

a
, (22)

g 5
vl

a cos u
2

uu

a
, (23)

where (l, u) are the longitudinal and latitudinal coordinates and a is the radius of
the sphere. The recovery equations are then the two scalar equations,

=2ũ 5 = ? a, (24)

=2ṽ 5 = ? b, (25)

where =2 and = are the spherical two-dimensional Laplace and divergence operators,
respectively, and a 5 (d̃, 2g̃), b 5 (g̃, d̃). The Galerkin formulation is given by
Eq. (9).

APPENDIX B: FILTERING TRANSFORMATION

The (N 1 1) Legendre coefficients gk of Eq. (10) are given by [5]

gk 5
e1

21 g(x)Lk(x) dx
ck

, ck 5 E1

21
Lk2(x) dx. (26)
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Using Gauss–Lobatto quadrature to evaluate the integral in the numerator of gk

(ck is known analytically), the Legendre coefficients can be approximated with

gk 5
1
ck
ON
l50

g(xl)Lk(xl)rl , (27)

where the xl and rl are the (N 1 1) Gauss–Lobatto roots and their corresponding
quadrature weights, respectively. Note that if the function g is a polynomial of
degree N, then the quadrature formula will be exact for all the Legendre coefficients
except the highest one.

The filtered function g̃ can now be computed on the Gauss–Lobatto point xi

with the help of Eqs. (27) and (11):

g̃(xi) 5 ON
k50

1
ck
ON
l50

g(xl)Lk(xl)rl sk Lk (xi). (28)

The above formula can be cast in the matrix–vector product form:

g̃(xi) 5 ON
l50

Ail g(xl), where Ail 5 ON
k50

1
ck

rl sk Lk (xl)Lk(xi). (29)

The matrix Ail lumps the forward and backward Legendre transforms and the filter
application into a single operation.

The two-dimensional filter is calculated by tensor–product application of the
one-dimensional formula.
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